CMSC202 Computer Science II for Majors

Lecture 12 – Linked Lists

Dr. Katherine Gibson

Last Class We Covered

- Inheritance
- Object relationships
 - is-a (Inheritance)
 - has-a (Composition and Aggregation)

AN HONORS UNIVERSITY IN MARYLAND

Any Questions from Last Time?

Today's Objectives

- To cover linked lists in detail
 - Traversal
 - Creation
 - Insertion
 - Deletion

4

AN HONORS UNIVERSITY IN MARYLAND

Linked Lists vs Vectors

What is a Linked List?

- Data structure
 - Dynamic
 - Allow easy insertion and deletion
- Uses nodes that contain
 - Data
 - Pointer to next node in the list

Example Linked List

UMBC

0

7

I N

VERSITY

MARYLAND

• We already have vectors!

- What are some disadvantages of an vectors?
 - Inserting in the middle of an array takes time
 - Deletion as well
 - Sorting
 - Requires a *contiguous* block of memory

UMBC **Representation in Memory**

HONORS UNIVERSITY IN MARYL

UMBC (Dis)Advantages of Linked Lists

- Advantages:
 - Change size easily and constantly
 - Insertion and deletion can easily happen anywhere in the Linked List
 - Only one node needs to be contiguously stored
- Disadvantages:
 - Can't access by index value
 - Requires management of memory
 - Pointer to next node takes up more memory

10

AN HONORS UNIVERSITY IN MARYLAND

Nodes

- - A node is one element of a Linked List

- Nodes consist of two main parts:
 - Data stored in the node
 - Pointer to next node in list

Often represented as classes

Code for Node Class

AN HONORS UNIVERSITY IN MARYLAND

Linked List Overview

Example Linked List

AN HONORS UNIVERSITY IN MARYLAND MARYLAND

• Last node in the Linked List points to **NULL**

 Each node points to either another node in the Linked List, or to NULL

– Only one link per node

UMBC MARYLAND MARYLAND MARYLAND

- Hard part of using Linked Lists is ensuring that none of the nodes go "missing"
- Think of Linked List as a train

 (Or as a conga line of Kindergarteners)
- Must keep track of where links point to
- If you're not careful, nodes can get lost in memory (and you have no way to find them)

- What functions does a Linked List class implementation require?
- Linked_List constructor
- insert()
- remove()
- printList()
- isEmpty()

Linked Lists' "Special" Cases

- Linked Lists often need to be handled differently under specific circumstances
 - Linked List is empty
 - Linked List has only one element
 - Linked List has multiple elements
 - Changing something with the first or last node
- Keep this in mind when you are coding
 - Dummy nodes alleviate some of these concerns

UMBC

Creating a Linked List

AN HONORS UNIVERSITY IN MARYLAND

On the Board

- To control our traversal, we'll use a loop
 - Initialization, Termination Condition, Modification
 - 1. Set **CURR** to the first node in the list
 - 2. Continue until we hit the end of the list (**NULL**)
 - 3. Move from one node to another (using **m_next**)

AN HONORS UNIVERSITY IN MARYLAND

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

AN HONORS UNIVERSITY IN MARYLAND

AN HONORS UNIVERSITY IN MARYLAND

UMBC

Insertion and Deletion

AN HONORS UNIVERSITY IN MARYLAND

On the Board

Announcements

- Project 3 is out get started now!
 - It is due Thursday, March 31st